

Extended Essay

Computer Science

Title

Evaluation of Blockchain as Replacement for Client-Server Model for Asset Management in

Online Games

Research question

To what extent is a blockchain-based system a viable option for the management of assets of an

online game involving inter-player asset trading?

Session

May 2021

Word count

3,842

Table of Contents

I. Introduction 1

II. Methodology of Evaluation 2

1. General Criteria 2

2. Specific criteria for success 3

1. Speed and reliability 3

2. Storage 4

3. Computational power 5

III. Client-server models 6

1. Topology design 6

2. Anatomy of a client-server transaction (Steam) 7

3. Use in asset trading systems 9

4. Analysis with respect to criteria 10

1. Speed and reliability 10

2. Storage 11

3. Computational power 12

IV. Blockchain models 14

1. Topology design 14

2. Anatomy of a blockchain transaction 16

3. Use in asset trading systems 19

4. Analysis with respect to criteria 19

1. Speed and reliability 19

2. Storage 20

3. Computational power 22

V. Comparison 25

1. Speed and reliability 26

2. Storage 26

3. Computational power 26

VI. Conclusion 28

1. Evaluation 29

VII. Bibliography 30

 1

I. Introduction

A rise of incidents regarding information security has been seen with the rise of the internet. It

also indicates more vulnerabilities of users, making online theft of resources more and more

common. For larger corporations being affected by hacking attacks, this has been disastrous in

the past, taking the example of the 2016 Bangladesh Bank cyber heist, wherein over $102

million were stolen, some of which was never recovered. Similar large-scale theft has been done

with trading, wherein assets are exchanged amongst players daily. Therefore, cybersecurity and

cryptography have become essential for daily functioning, and one well-known implementation

of this principle of cryptography over networking that has seen a rise in popularity over the years

is blockchain technology.

Asset trading games involve assets which have a specific value, use, and fixed quantity. This

value system causes monetary compensation, with individual collectors paying several thousands

of dollars to acquire such rare assets. However, during transactions, these assets have been

known to be stolen along with the actual currency paid for it. Thus, game companies have been

successfully sued in the past for compensation for these assets. An effective solution for this

dilemma would be the use of blockchains for asset management and exchange. The blockchain

would allow for complete transparency concerning the exchange of assets, and the immutability

associated with blockchain systems would prevent robberies of such assets. This essay

investigates the feasibility of a blockchain system in the management of such assets in games

involving inter-player asset exchange.

 2

II. Methodology of Evaluation

This research paper evaluates the feasibility of blockchain as a system to manage assets in games

involving inter-player asset exchange. In order for achieving this, a framework for testing has

been defined to provide for fair and unbiased evaluation. The framework acts as a qualitative

method to measure the suitability of the framework for the concerned tasks.

II.1. General Criteria

Level Description

3 The criterion objective is fully met and satisfied for suitability in asset management.

The implementation meets all requirements described, lending itself to a secure and

robust protocol for asset trading in this context.

2 The objectives outlined are met to an extent allowing for adequate functionality in the

context of asset management. Minor problems can be worked around to meet the

criteria.

1 Lapses in the framework exist, preventing parts of the specific criteria from being met.

Some aspects of the criterion are still met and can benefit asset trading and

management.

0 The framework under evaluation does not meet the criterion in any way. The

significant lapses present in this criterion affect its use for asset management.

Figure 1. General criteria for analysis

 3

II.2. Specific criteria for success

II.2.1. Speed and reliability

This criterion focuses on the real-world performance of the frameworks, and what it means for

asset management.

Criterion Description

Request speed and

protocol overhead

Concerns the method of data transfer across the framework, and its

appropriateness for frequent transfers of multiple assets, as is with

simultaneous asset trading solutions.

Device-side

processing
Regards processing request overheads on the server-side made on the

framework. It includes network protocol considerations.

Figure 2. Criteria for analysis under speed and reliability

 4

II.2.2. Storage

This criterion focuses on the framework storage requirements and targets possible data faults.

Criterion Description

Integrity of

transaction data

It relates to any measures in place preventing corruption of records of

transactions made using assets through the concerned framework.

Integrity of asset

data

This relates to any measures in place preventing corruption of assets being

managed and transmitted through the concerned framework.

Loss prevention

and tracing

Regards the effectiveness of safeguards put into place to handle or prevent

incidents of mishandling/corruption of data.

Figure 3. Criteria for analysis under storage

 5

II.2.3. Computational power

This criterion focuses on the framework computation requirements to facilitate asset

management and trading, and possible effects on player system requirements.

Criterion Description

Client-side processing and

requirements

Regards the system requirements that stakeholders must meet to

access the framework for completing a transaction.

Framework processing and

requirements

Regards the performance of the framework and computational

requirements to maintain a running state.

Network connectivity and

reliability

Concerns the reliance on the framework on network connectivity

when handling tasks or transactions.

Figure 4. Criteria for analysis under computational power

 6

III. Client-server models

The client-server model is a distributed application architecture partitioning workload between

two categories of stakeholders: the server providing a resource or service, and the client

requesting the resource or service over a computer network. A given system can act as both

client and server in this model. Server programs started by the host share resources with the

client, but clients do not share resources with the server. Clients merely request services

communicated through TCP based protocols.

III.1. Topology design

Different client-server topologies can be implemented in different programs. Server-hosts can

communicate with one another for sharing of resources. A single server can push resources to

multiple clients, and a single client can request or pull resources from multiple servers. As a

result, servers often have higher hardware requirements than clients.

Clients can be classified into thick clients and thin clients. Thick clients do not consume any of

the server’s resources to execute applications. These clients suffice the hardware requirements

for running programs pulled from servers. Servers only provide the data necessary to run these

programs, run independently by the client.

Thin clients depend heavily on the server’s resources for executing a program. They are

relatively low-performance terminals sharing resources from the server to run applications

 7

hosted by the server. These clients cost less due to less hardware redundancy for running

programs pulled from a server.

Servers are also categorised into iterative and concurrent servers based on how they process

client requests. Iterative servers process client requests through TCP/IP one at a time, causing

unnecessary delays not attributable to latency. Concurrent servers process multiple requests at

once through subdivision of loads into sub-processes. These are better suited for topologies

where multiple clients are dependent on a single server.

Client-server architectures, in real-world applications, typically rely on multi-tier architectures.

These physically separate different server functions into processes run by groups of servers,

known as layers of the server architecture. Tier segregation allows for better resource

management between servers and provides flexibility should a layer be added, removed, or

modified. It also promotes redundancy and reduces the load on servers that process the backend,

allowing for future expansion.

III.2. Anatomy of a client-server transaction (Steam)

The Steam in-game or inter-player transaction system relies on HTTP requests to three tiers of

servers, secured using SSL v3 128-bit protection. These HTTP requests pass through three layers

of servers (game purchasing servers, Steam billing server, Steam client) before the transaction is

approved. The SteamWorks API by Valve Corporation is utilised for transaction approval.

 8

Stage Description

Initialisation The SteamWorks API is initialised before the transaction begins. This is

necessary to communicate with the Steam billing servers and requires a

header file, lib file, and DLL to continue.

Request

bundling

The user’s Steam ID (64-bit unique identifier), ISO 3166 country code, ISO

4217 currency code, and ISO 639-1 language code are bundled with regular

purchasing data. This is obtained through the ISteamUser::GetSteamID,

ISteamUser::GetCurrentGameLanguage, and ISteamMicroTxn/GetUserInfo

API calls. This information is local to the Steam client.

Request

execution

The game’s local purchasing server initiates a request through WebAPI on

behalf of the Steam client using the ISteamMicroTxn/InitTxn call, including:

1. Order ID - 64-bit unique identifier for the purchase,

2. App ID - Unique identifier for the game whose asset is being traded,

3. ISO 631-9 code for the Steam client language,

4. ISO 4217 currency code for the client, substituted with a market-value

currency rate if not present,

5. A list of items being traded, containing the 32-bit item ID, quantity,

amount, description, and categories of each item.

Authorisation If successful, the request attempt automatically notifies the Steam client to

authorise the transaction along with transaction details and funding options.

After user involvement, the client receives a notification regarding request

 9

result using the ISteamUser::MicroTxnAuthorisationResponse_t handler.

Result and

completion

The purchasing server finalises the transaction through the

ISteamMicroTxn/FinalizeTxn command with the order ID and app ID

obtained earlier. A response is provided directly to the client regarding

transaction completion or errors. This information is sent from the billing

servers to the client.

Figure 5. Steps taken for Steam asset transaction (SteamWorks Foundation)

These stages are implemented during every micro-transaction or inter-player transaction on

Steam. Some steps may be redundant when making multiple requests and packaging limits

imposed by the API can cause processing delays.

III.3. Use in asset trading systems

Client-server models can utilise AJAX or HTTP protocols to enable transactions between

players. In most cases for simplicity HTTPS protocols are used. Polling is enabled between

clients and servers for inter-player transactions. This is crucial to maintain a consistent

connection between the two stakeholders in the transaction.

The primary limitation of the client-server model is the possibility of server infection. Using the

game purchasing server as a middleman for these assets also puts both the purchasing and billing

 10

tiers at risk of Denial of Service attacks. During a server-side overload when multiple

transactions are being handled, the risk of DOS attacks becomes much greater.

SteamWorksAPI acts as a workaround, facilitating the transaction. Moreover, the API

implementation chances of transaction cancellation and information abandonment, reducing the

risk of phishing. Forcing the usage of order IDs helps track any faulty transactions, but the client

country and identifiers are only optional, reducing the possibility of tracing down any criminal

activity.

III.4. Analysis with respect to criteria

III.4.1. Speed and reliability

Request speed and protocol overhead

Traditional client-server architectures afford higher speeds for data transfers than blockchains.

Server layers are designed to offload different tasks to different groups, thereby reducing

overload on a single server. Because clients directly interact with servers the operations pass

through fewer intermediaries and are faster. The existing system scores a 3 in this criterion.

Device-side processing

For asset transactions, the load of the transaction processing is offloaded almost entirely to the

server. The client is required to remain connected to the servers for the duration of the

transaction. This is required until the transaction is authorised. There is little processing done on

the client-side for packaging transaction requests. This criterion scores a 3.

 11

III.4.2. Storage

Integrity of transaction data

Client-server transactions operate on the principle of atomicity. A transaction is either completed

or not completed at all. Errors are handled and transaction data is kept isolated from other

transactions, through special identifiers. However, when in transmission the transaction is at risk

of waiting due to possible server overloads, mitigated by the P2P architecture. During

transmission, data integrity can be compromised. 32-bit and 64-bit private and public keys serve

to maintain transaction data integrity but can be easily broken during a brute-force attack. If

used, the keys of a higher standard should be applied for maintaining security. This criterion

scores a 2.

Integrity of asset data

Asset data is not transmitted during the transaction process. The asset data remains on the

database layer of the server architecture used by Steam. Bypassing the front-end server from a

client would be difficult due to a lack of direct interaction between the client and the database.

Thanks to layer security, this criterion scores a 3.

 12

Data loss prevention and tracing

Due to atomicity, transaction data is either entirely lost or verified when a transaction takes

place. Polling is not always allowed for transaction purposes, losing all data related to the

transaction. Repetitive occurrences may result in the loss of the asset from the client’s inventory

without their consent. In case of malicious transactions, the Steam IDs of both stakeholders are

kept to better track and apprehend criminal activity. A blocklist is also implemented. This

criterion scores a 1 due to inadequate rollback systems for data loss.

III.4.3. Computational power

Client-side processing and requirements

Steam operates using a thin client system. Almost all computational load is hence handled by the

server. Zoning systems for servers also reduce the need for client computation for detecting the

fastest server. In this regard, the criterion scores a 3.

Server-side processing and requirements

Due to thin clients, servers handle almost all computational workloads. The number of

concurrent loads that servers can handle depends on their computational ability. Much

computational power is wasted on the server-side if the client disconnects. In many instances, the

servers can go offline for maintenance or overloading. A peer-to-peer architecture would

 13

mitigate this flaw. This criterion scores a 2 because servers can be upgraded to match client

requirements.

Network connectivity and reliability

Consistent network connectivity is required for transaction completion. Lack of polling systems

may cause transaction failures if the client network is not consistent. While maintaining security,

it also increases the number of times a transaction may occur. This may lead to double spending

if billing servers are still processing requests. Hence, this criterion scores a 1.

 14

IV. Blockchain models

IV.1. Topology design

A blockchain operates on the peer-to-peer model, wherein every node on the network must be an

independent client and server. It represents a distributed ledger system that is immutable, or not

prone to data loss, and decentralised. There are three primary topologies which a blockchain

network can use: private, public, and consortium networks.

IV.1.1. Public blockchain

A public blockchain is also called a permissionless blockchain. Any node can join the blockchain

network and take part invalidation. However, to prevent malicious activity, proof of work

algorithm (PoW) limits the rate of addition of blocks to the network, done through SHA-256

hash generation and NONCE searches.

This system of blockchain is typically used for cryptocurrency exchange and data/crypto mining.

All steps in this topology are incentivised through cryptocurrency compensation. Node

consensus and independence ensure data security and transparency.

IV.1.2. Private blockchain

A private blockchain works based on only authorised individuals taking part in transactions. It

differs from a public blockchain with individual control of the blockchain, centralising its

 15

authority. That individual provides all read and write permissions and on-demand authorisation

for operations. In most cases, a firewall protects access to the blockchain. This topology

distributes the load between all nodes better and is more efficient. Firewalls reduce the need for

proof-of-work security. Instead, proof of stake (PoS) is used, wherein a node’s existing stake in

transactions is the metric for selecting the next node to handle transaction approval.

Because it relies on existing data and does not vary based on computational ability, it is less

resource-intensive and allows relatively thin clients to participate. Byzantine fault tolerance

(BFT) uses a consensus of ⅔ of nodes present to approve a transaction. Because this topology is

more restricted in access, it is used more in backend systems than front-end public

implementations.

IV.1.3. Consortium blockchain

A consortium blockchain is also known as a public-permission blockchain. In this, a single

authority/group of authorities controls write access to the blockchain, and public access is limited

to reading and accessing content present on the nodes, and not taking part in transactions. This

implementation of a blockchain operates on PoS and BFT because of the limited nodes

participating in transactions, not needing more rigorous algorithms to retain security. Companies

use this to allow consistently-updated company-specific data like financial data to be accessible

in the public domain, to increase consumer trust and avoid litigation for non-transparency.

 16

IV.2. Anatomy of a blockchain transaction

Each full node in a blockchain contains a copy of all transactional data, ensuring the verity of

any data, and mitigating malicious activity. Different algorithms like Proof of Work (PoW) and

Proof of Stake (PoS) are used by block miners/signers to validate a block. Based on these two

algorithm categories, the system requirements of a blockchain vary. A transaction can be broken

down into the creation and digital signature of the transaction, propagation (flooding) of the

transaction, creation of the block, and the addition and verification of the block to the

blockchain.

Stage Description

Creation and

digital signature

Transactions are created through a data structure representing a transfer of

value, with supplementary data like the logic of transfer proceedings and

source and destination addresses. All data is packaged into a single unit

secured using a private key. This unit is known as a digital signature.

Propagation of

transaction

The digital signature is transmitted to multiple peer nodes for validation of

the transaction. A consensus of peer nodes is used to validate the

transaction.

Creation of

block

If validated, all digital signatures associated with the transaction are put

into a single data block.

By the block creation stage, the transaction is effectively considered

 17

confirmed.

Addition to

ledger and block

verification

When the block is added to the ledger, it obtains the SHA hash of the block

behind it and a nonce to be solved. The hash pointer to the block ahead of it

is calculated with the nonce using either the Proof of Work (PoW) or Proof

of Stake (PoS) algorithm depending on the topography of blockchain.

1. Proof of Work (PoW) - This method first verifies the block data

before nonce calculation. A hash is generated using a random value.

If this hash does not meet the criteria imposed by the block

consensus, the hash is again generated randomly using the nonce,

until the correct hash is found. It relies on a brute-force process to

obtain the correct hash and is computationally taxing because

multiple miners are involved in solving the nonce. In compensation,

the miner obtains a given amount of new currency and its crypto

wallet is updated to match.

2. Proof of Stake (PoS) - This method verifies the block data before

nonce-based calculation.

Instead of solving the nonce to generate a block hash, a node is

randomly selected through its investment in the blockchain i.e. the

number of coins it possesses and their age. This is referred to as the

stake. A hash is generated using these parameters along with the

nonce.

 18

If the hash does not meet the consensus, it is again generated with a

new timestamp until the consensus is met. The selected node is

compensated with newly minted currency, and its crypto wallet is

updated to match.

Using the generated hash, the block adds to the ledger, with the previous

and next blocks matching their hash pointers with the new block to verify

its addition.

Figure 6. Steps for transaction done through a blockchain (Medium)

These steps are performed every time a block is added to the system or a transaction takes place.

All blocks in the ledger undergo verification when new blocks are added, and typically six

verifications are required to finalise the status of a block on the network. Peer confirmation and

multiple verification attempts ensure the security of all blocks.

In larger implementations, though the time duration may be equal, the difference in

computational power required for each verification method because of simultaneous computation

in PoW. This will increase as the blockchain scales up. In this sense, the PoS algorithm is more

efficient and sustainable.

 19

IV.2. Use in asset trading systems

A large-scale asset trading system would use a PoS blockchain, ensuring most users can

participate in transactions. A consortium blockchain set is ideal for usage in asset management

and trading systems. It ensures individual asset security during trades by keeping one blockchain

for asset storage and another PoS blockchain for asset transaction.

IV.3. Analysis with respect to criteria

IV.3.1. Speed and reliability

Request speed and protocol overhead

All decentralised systems require more time to process requests than centralised client-server

architectures. The time required to broadcast and validate a transaction across a blockchain

network causes this. It causes higher latency and further slows down the request speed. For PoW,

a limit is kept on the maximum transaction rate in the blockchain. Thus, proof-of-work would

further increase the latency for access. Algorithms prioritising closer nodes and PoS mitigate

this. However, it remains prevalent in blockchain transactions.

Because this latency does not severely affect the working of the model, some redundancies can

be overlooked. This criterion has been given a score of 2 as a result.

 20

Device-side processing

Any device which accesses a blockchain and the data it contains must partake in a blockchain

transaction. The device thus takes both the computational load of accessing and pulling data

from the other nodes and the computational load of partaking in a transaction through nonce

calculation and mining/forging. This load is typically higher than that of a client device

accessing a server. In an asset trading application, it will not affect the ability of the device to

partake in asset trading, while increasing the security of the asset trade, aside from the latency.

As a result, this criterion scores a 3.

IV.3.2. Storage

Integrity of transaction data

Because a blockchain operates through a peer-to-peer network, all transactions are validated by a

majority of operating nodes, using a Byzantine fault tolerance system on the network. Thanks to

this, the validity of the transaction is kept intact. However, if a single authority owns/operates

51% of more of the nodes that control access to the blockchain, the transaction data can tamper.

However, considering a network that operates with over 21 million concurrent users (Statista)

this event is extremely unfeasible and unlikely. Hence, this criterion scores a 3.

Integrity of asset data

Rules similar to those specified for transaction data would apply to the asset data, as a consensus

is required for any transaction involving the blockchain. Considering the scale of such a

 21

blockchain, the assets would remain as safe, if not safer than the transaction data, direct

interaction does not occur between the user and asset. Hence, this criterion scores a 3.

Data loss prevention and tracing

A blockchain functions by allocating hashes to individual blocks, along with the previous and

next blocks’ hashes connected cryptographically. The block itself contains transaction data

including the addresses of those involved. Hence, to trace an individual transaction, the TxHash

(transaction hash) value is required. Tampering with a single block involves tampering with all

blocks simultaneously due to linking of hashes. This would be completely unfeasible at a larger

scale. Continuous node verification further reduces the likelihood of this happening. This

criterion, therefore, scores a 3.

 22

IV.3.3. Computational power

Client-side processing and requirements

The client-side processing requirements differ for different implementations of a blockchain. For

Ethereum, the system requirements for operating a node in the least resource-intensive form are

as follows:

Component Minimum requirement (Ethereum.org) Recommended requirements

(Ethereum.org)

CPU dual-core or higher quad-core or higher

RAM 4 GB RAM if using SSD, 8 GB+ RAM if

using HDD

16 GB+ RAM

Storage N/A 500+ GB SSD

Network

speed

8 Mbit/s 25+ Mbit/s

Figure 7. System requirements for Ethereum platform (Ethereum Foundation)

As seen, the minimum system requirements for operating a full node are more input/output

intensive than processing intensive. This is because the node merely stays in sync with the

blockchain (Ethereum.org). More powerful processing units are beneficial to operation.

Light nodes that can check the validity of transactions and store only the header node, requesting

everything else, also exist. This is beneficial for lower-powered implementations or mobile

 23

devices. A PoS-based Ethereum update is being developed, which should reduce requirements

further.

However, the system requirements for the Steam client are lower than those mentioned above.

That said, on Steam statistics most clients operate on quad-core processors and high-capacity

storage devices which fulfil recommended node specifications (Valve Corporation). Existing

systems running below these requirements can operate as light nodes, and still be able to conduct

inter-player transactions. This criterion scores a 2.

Server-side processing and requirements

The server-side and client-side processing requirements are identical because of the peer-to-peer

model. More powerful servers, if running virtual machines, can operate multiple nodes at a time

thanks to this. This criterion thus scores a 3.

Network connectivity and reliability

Blockchain computation is very network intensive. All operations are synced with other nodes.

For larger node implementations, blockchains may require several hours to fully sync. This is

common to both PoW and PoS systems. Nodes may not be active at all times, requiring syncs

when reconnecting.

 24

Ethereum provides several options for syncs, varying in storage requirements and time. This

provides flexibility and does not require constant uninterrupted internet connection using long-

polling requests, but still relies heavily on bandwidth availability. The Steam client, by default,

requires internet access and can consume a large amount of bandwidth at times for server

operations (offloaded onto the blockchain). Thus, this criterion scores a 2.

 25

V. Comparison

Aspect Client-server Blockchain

SPEED AND RELIABILITY

Request speed and protocol overhead 3 2

Device-side processing 3 3

STORAGE

Integrity of transaction data 2 3

Integrity of asset data 3 3

Data loss prevention and tracking 1 3

COMPUTATIONAL POWER

Client-side processing and requirements 3 2

Server-side processing and requirements 2 3

Network connectivity and reliability 1 2

TOTAL 18 21

Figure 8. Table of comparison of criteria.

 26

V.1. Speed and reliability

Client-server models have an advantage over blockchain models as they are simpler to

implement. Although blockchains can be programmed easily through a variety of languages, the

speed of a peer-to-peer architecture lacks in comparison to a client-server architecture due to

direct connections between servers and clients. The difference in speed is not negligible but is

not a major drawback to this model.

V.2. Storage

Asset data and transaction data are significantly more secure in a blockchain network than a

client-server model. This is the most significant improvement that blockchains can provide for

transactions. Additionally, the traceability of transactions is built into the blockchain system due

to complete transparency. Client-server models can be modified to provide more security, but

blockchains provide significant improvements in this criterion.

V.3. Computational power

Both blockchains and client-server architectures rely on heavy computation. In a blockchain, this

is distributed more between nodes, because of peer-to-peer architectures. A higher load on the

client limits the prospective users who can use the system in its full capacity. Light nodes exist

but these may not provide a full computation of transactions. However, this distribution of

computation also means that those with more powerful computers can also share their resources

 27

more, and balances workloads on a larger scale. The reliance on network connectivity is high for

both models, but blockchains which use polling rely less on networks for transaction verification.

A client-server model rolls back transactions in the case of network errors. Blockchains thus

provide more consistency here.

 28

VI. Conclusion

As a whole, based on this investigation, one can have a clear position on the feasibility of a

blockchain system in the management of assets in games involving inter-player asset exchange.

This in-depth analysis of both models allows us to understand the models’ contextual relation

and their individual strengths and weaknesses.

The client-server model is very well supported and is currently the de-facto option for this

purpose. It is widely implemented but lacks security and consistency, due to which blockchains

are evaluated as a substitute. Blockchains have an advantage of transparency and redundancy,

reducing server costs in case of node failure.

Blockchain also features a more distributed computational workload, allowing for less powerful

servers and thus less consumption of resources, a major issue with both models. Blockchain has

future scope in further optimising transactions through proof-of-stake implementations.

The main limiting factor for blockchains is the computation required for existing proof-of-work

algorithms and storage requirements for nodes. Request speed tends to be lower and client

devices have higher computational loads. It is also a recent concept and cannot be widely used

until proof-of-stake policies are further tested. As more people begin to use blockchains, the

model will become more and more optimised.

 29

Today, one can conclude that blockchains should be implemented in beta variants for asset

management systems for larger applications. Small implementations exist that are growing in

popularity, but the model needs to be more refined to become widespread.

VI.0.1. Evaluation

This evaluation only looks at the theoretical capabilities of each system based on existing data

overheads. Several factors outside the scope of my essay may play a role in the correct model to

choose. Furthermore, a very academic viewpoint was used for this evaluation, and the theoretical

differences may not be as perceptible for request times and other workloads. In very large

applications, the future scope of the models used is important for system functioning and

viability.

 30

VII. Bibliography

Clement, J. “Number of Steam Users 2020 | Statista.” Statista, Feb. 2021,
https://www.statista.com/statistics/308330/number-stream-users/.

Ethereum Foundation. “Ethereum Development Documentation | Ethereum.Org.” Ethereum,
edited by @wackerow, 19 Jan. 2021, https://ethereum.org/en/developers/docs.

Linux Foundation. Introduction to Hyperledger Business Blockchain Design Philosophy and
Consensus. Edited by Hyperledger, vol. 1, 2018, https://www.hyperledger.org/wp-
content/uploads/2017/08/HyperLedger_Arch_WG_Paper_1_Consensus.pdf. Hyperledger
Documentation.

Medium. “CoinBundle – Medium.” Medium, edited by Editors at Medium, Medium, 2018,
https://medium.com/coinbundle.

Valve Corporation Inc. “Steam Hardware & Software Survey.” Steam, edited by Steam, Valve
Corporation, Jan. 2021, https://store.steampowered.com/hwsurvey.

Weber, Ingo, et al. “On Availability for Blockchain-Based Systems.” IEEE Explore, vol., no.,
Oct. 2017, pp. 64–73, doi:10.1109/SRDS.2017.15. IEEE.

Baughman, N.E., and B.N. Levine. "Cheat-Proof Playout For Centralized And Distributed
Online Games". Proceedings IEEE INFOCOM 2001. Conference On Computer
Communications. Twentieth Annual Joint Conference Of The IEEE Computer And
Communications Society (Cat. No.01CH37213), pp. 8-10. IEEE,
doi:10.1109/infcom.2001.916692. Accessed 23 Jan 2021.

GauthierDickey, Chris et al. "Low Latency And Cheat-Proof Event Ordering For Peer-To-Peer
Games". Proceedings Of The 14Th International Workshop On Network And Operating Systems
Support For Digital Audio And Video - NOSSDAV '04, 2004, pp. 4-5. ACM Press,
doi:10.1145/1005847.1005877. Accessed 22 Jan 2021.

Knutsson, B. et al. "Peer-To-Peer Support For Massively Multiplayer Games". IEEE INFOCOM
2004, pp. 1-3. IEEE, doi:10.1109/infcom.2004.1354485. Accessed 23 Jan 2021.

Schiele, Gregor et al. "Requirements Of Peer-To-Peer-Based Massively Multiplayer Online
Gaming". Seventh IEEE International Symposium On Cluster Computing And The Grid (Ccgrid
'07), 2007, pp. 1-5. IEEE, doi:10.1109/ccgrid.2007.97. Accessed 21 Jan 2021.

Shun Yao, and Jess Port Telles. Method And System For Facilitating Online Gaming. No.
2015/0089595, 2015.

 31

Shun-Yun Hu et al. "VON: A Scalable Peer-To-Peer Network For Virtual Environments". IEEE
Network, vol 20, no. 4, 2006, pp. 22-31. Institute Of Electrical And Electronics Engineers
(IEEE), doi:10.1109/mnet.2006.1668400. Accessed 21 Jan 2021.

Yu, Anthony (Peiqun), and Son T. Vuong. "MOPAR". Proceedings Of The International
Workshop On Network And Operating Systems Support For Digital Audio And Video -
NOSSDAV '05, 2005, pp. 101-103. ACM Press, doi:10.1145/1065983.1066007. Accessed 21 Jan
2021.

Dimitriou, Kostas, and Markos Hatzitaskos. Core Computer Science For the IB Diploma
Program (International Baccalaureate). Express Publishing, 2015.

Statista. Number of peak concurrent Steam users from January 2013 to December 2020. Statista.
February 2021. https://www.statista.com/statistics/308330/number-stream-users/. Accessed 2
February 2021.

Valve Corporation. Steam Hardware and Software Survey. January 2021. Steam.
https://store.steampowered.com/hwsurvey. 2 February 2021.

